$0.48 \times 0.36 \times 0.20 \text{ mm}$

T = 293 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Chlorophenyl)-3-(2-methoxyanilino)propan-1-one

Ligia Llovera,^a Pavel Anzenbacher Jr,^b Simón E. López^a and Teresa González^c*

^aLaboratorio 223, Departamento de Química, Universidad Simon Bolivar (USB), Apartado 47206, Caracas 1080-A, Venezuela, ^bDepartment of Chemistry, Center for Photochemical Sciences, Bowling Green State University (BGSU), Bowling Green, OH 43-403, USA, and ^cCentro de Química, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas 1020-A, Venezuela Correspondence e-mail: tegonzal@ivic.gob.ve, tegonzal1969@gmail.com

Received 16 December 2010; accepted 27 December 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.077; wR factor = 0.198; data-to-parameter ratio = 16.7.

In the title compound, $C_{16}H_{16}CINO_2$, the molecule adopts a bowed conformation, with a dihedral angle of 39.9 (2)° between the aromatic rings. In the crystal, molecules are linked by C-H···O hydrogen bonds, generating *C*(6) chains propagating in [010]. Very weak aromatic π - π stacking is also observed [centroid-centroid distance = 4.040 (2) Å].

Related literature

For the synthesis of quinoline derivatives, see: Peifer *et al.* (2007). For background to the antimicrobial activity of quinolines, see: Yamashkin & Oreshkina (2006). For further synthetic details, see: Dienys *et al.* (1977); Volkov *et al.* (2007).

Experimental

Crystal data $C_{16}H_{16}CINO_2$ $M_r = 289.75$ Orthorhombic, *Pbca* a = 7.1690 (6) Å

b = 14.4303 (11) Åc = 28.667 (3) Å $V = 2965.6 (4) \text{ Å}^3$ Z = 8

Mo I	Kα ra	diation	
$\mu = 0$	0.26 r	nm^{-1}	

Data collection

31012 measured reflections
3035 independent reflections
2016 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.057$

Refinement

I v

3

$R[F^2 > 2\sigma(F^2)] = 0.077$	182 parameters
$vR(F^2) = 0.198$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
035 reflections	$\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15A\cdots O2^{i}$	0.93	2.49	3.414 (4)	171
	2 1			

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, z$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *CrystalStructure* (Rigaku/MSC, 2005) and *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank the Decanato de Investigación y Desarrollo (DID-USB, Caracas) and the FONACIT–MCT (project LAB-97000821) for financial support. LL thanks the Decanato de Estudios de Postgrado (USB, Caracas) for a travel-training fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5773).

References

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Dienys, G., Gureviciene, J., Cekuoliene, L. & Steponavicius, J. (1977). Lietuvus TSR Mokslu akademijos darbai Ser. B, 1, 33–38.
- Jacobson, R. (1998). *REQAB*. Private communication to the Rigaku Corporation, Tokyo, Japan
- Peifer, C., Kinkel, K., Abadleh, M., Schollmeyer, D. & Laufer, S. (2007). J. Med. Chem. 50, 1213–1221.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Volkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). *Chem. Heterocycl. Compd*, 43, 445–453.
- Yamashkin, S. A. & Oreshkina, E. A. (2006). Chem. Heterocycl. Compd, 42, 701–718.

supplementary materials

Acta Cryst. (2011). E67, o315 [doi:10.1107/S1600536810054449]

1-(4-Chlorophenyl)-3-(2-methoxyanilino)propan-1-one

L. Llovera, P. Anzenbacher Jr, S. E. López and T. González

Comment

The title compound was prepared as an intermediate for the synthesis of 4-aryl-8-methoxy-quinoline under acid conditions (Dienys *et al.*, 1977). The synthesis of the title compound might be obtained through decyclization of piperidol and transamination of the decyclization products (Volkov *et al.*, 2007). These compounds exhibit a broad range of antimicrobial activity and particular, antitubercular activity, antimalarial activity and are also present in antiallergic and antiasthmatic agents (Yamashkin & Oreshkina, 2006). In addition, these compounds could act as drug targets of a large numbers of protein-inhibitor complexes, for example the mitogen-activated protein kinase (Peifer *et al.*, 2007).

The X-ray structure determination showed that compound (I) contains only one organic molecule per asymmetric unit (Fig. 1). The molecule adopts a slightly angular conformation, where the dihedral angle defined by aromatic rings is $39.9 (2)^{\circ}$. respectively. The crystal packing (Fig. 2) of this structure consists of infinite chains which are interconnected through hydrogen bonding interactions of the kind C—H···O (3.415 Å) along the *bc* plane. The final array (Fig. 3) is sustained by weak interactions of the kind π ··· π between aromatics rings with distance between centroid to centroid, *Cg*2···*Cg*2: 4.040 (2) Å. Where *Cg*2 is defined by C11/C12/C13/C14/C15/C16 atoms.

Experimental

A solution of 3-(4-chlorophenyl)-*N*,*N*-dimethyl-3-oxopropan-1-aminium chloride (0.01 mol) in distilled water (5 ml) was stirred at room temperature in a round bottom flask. After 5 minutes, a solution of 2-methoxy-phenylamine (0.01 mol) and concentrated hydrochloric acid (0.5 ml) in ethanol (10 ml) was added dropwise and the mixture was stirred at room temperature for 12 h to yield yellow blocks of (I). Yield: 79%. *M*.p. 83–84°C; ¹H NMR (400 MHz, CDCl₃, δ (p.p.m.), J= Hz): 3.27 (t, 2H, J= 6.4), 3.64 (t, 2H, J= 6.4), 3.81 (s, 3H), 4.57 (s, 1H), 6.68 (m, 2H), 6.76 (dd, 1H, J= 8.4, 1.5), 6.88 (td, 1H, J= 7.6, 1.1), 7.42 (d, 2H, J= 8.4), 7.87 (d, 2H, J= 8.4). ¹³C NMR (100 MHz, CDCl₃, δ (p.p.m.)): 38.0 (C9), 38.4 (C8), 55.5 (C7), 109.7 (C3), 109.9 (C6), 116.9 (C4), 121.3 (C5), 129.0 (C13 and C15), 129.5 (C12 and C16), 135.2 (C1), 137.6 (C11), 139.8 (C14), 147.2 (C7), 200.0 (C10). IR (KBr, cm⁻¹): 3413, 3085, 3061, 2961, 1685, 1074, 792. EI—MS (m/z): 290.37 [$M^{+\&bull}$; 1, 292.37 [$M^{+\&bull}$; +2], 136.07 [$M^{+\&bull}$; - (4-CIPhCOCH₂)].

Refinement

The N-bound H atoms were located in difference maps and refined as riding in their as found relative positions with $U_{iso}(H) = 1.5U_{eq}(N)$. The C-bound H atoms were placed in idealized positions (C—H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing displacement elipsoids drawn at the 35% probability level and H atoms shown as spheres of arbitrary radii.

Fig. 2. View of infinite chains interconnected through hydrogen bonding interactions of the kind C—H…O along the *bc* plane. Dashed lines indicate the donor…acceptor interactions for hydrogen bonds.

Fig. 3. View of the weak interactions of the kind $\pi \cdots \pi$ in the structure

F(000) = 1216

 $\theta = 2.8 - 56.1^{\circ}$

 $\mu = 0.26 \text{ mm}^{-1}$

Block, yellow

 $0.48 \times 0.36 \times 0.20 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.298 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71070$ Å

Cell parameters from 13752 reflections

1-(4-Chlorophenyl)-3-(2-methoxyanilino)propan-1-one

Crystal data

C₁₆H₁₆ClNO₂ $M_r = 289.75$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 7.1690 (6) Å b = 14.4303 (11) Å c = 28.667 (3) Å V = 2965.6 (4) Å³ Z = 8

Data collection

Rigaku AFC-7S Mercury diffractometer	3035 independent reflections
Radiation source: fine-focus sealed tube	2016 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.057$
ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (REQAB; Jacobson, 1998)	$h = -8 \rightarrow 8$
$T_{\min} = 0.927, \ T_{\max} = 0.950$	$k = -17 \rightarrow 13$
31012 measured reflections	$l = -34 \rightarrow 34$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.198$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0693P)^{2} + 1.923P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.14	$(\Delta/\sigma)_{\rm max} < 0.001$
3035 reflections	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
182 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0045 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-

rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.69107 (15)	0.62967 (7)	0.61228 (4)	0.0854 (4)
01	0.4661 (4)	0.2337 (2)	0.30790 (9)	0.0883 (9)
O2	0.9890 (4)	0.25566 (16)	0.49786 (9)	0.0727 (7)
N1	0.7477 (5)	0.2272 (2)	0.36535 (10)	0.0684 (8)
H1	0.6749	0.2852	0.3609	0.103*
C1	0.7033 (5)	0.1459 (2)	0.34171 (11)	0.0623 (9)
C2	0.5513 (6)	0.1488 (3)	0.31054 (12)	0.0690 (10)
C3	0.5005 (7)	0.0718 (3)	0.28559 (14)	0.0866 (13)
H3A	0.4010	0.0746	0.2648	0.104*
C4	0.5979 (9)	-0.0100 (3)	0.29143 (16)	0.1005 (16)
H4A	0.5628	-0.0626	0.2748	0.121*
C5	0.7461 (9)	-0.0141 (3)	0.32167 (16)	0.0958 (15)
H5A	0.8109	-0.0695	0.3254	0.115*
C6	0.8003 (6)	0.0638 (3)	0.34675 (13)	0.0783 (11)
H6A	0.9018	0.0607	0.3669	0.094*
C7	0.3001 (8)	0.2415 (4)	0.28063 (18)	0.123 (2)

supplementary materials

H7A	0.2579	0.3046	0.2809	0.185*
H7B	0.2051	0.2023	0.2935	0.185*
H7C	0.3257	0.2229	0.2491	0.185*
C8	0.8471 (5)	0.2253 (2)	0.40935 (12)	0.0654 (9)
H8A	0.9791	0.2153	0.4038	0.078*
H8B	0.8010	0.1748	0.4285	0.078*
C9	0.8179 (5)	0.3165 (2)	0.43408 (11)	0.0573 (8)
H9A	0.8793	0.3651	0.4164	0.069*
H9B	0.6855	0.3304	0.4346	0.069*
C10	0.8898 (5)	0.3180 (2)	0.48287 (11)	0.0554 (8)
C11	0.8363 (4)	0.3968 (2)	0.51434 (11)	0.0541 (8)
C12	0.8721 (5)	0.3894 (2)	0.56181 (12)	0.0667 (10)
H12A	0.9276	0.3360	0.5735	0.080*
C13	0.8258 (5)	0.4607 (3)	0.59179 (12)	0.0697 (10)
H13A	0.8488	0.4551	0.6236	0.084*
C14	0.7456 (5)	0.5401 (2)	0.57432 (12)	0.0605 (9)
C15	0.7108 (5)	0.5491 (2)	0.52753 (13)	0.0621 (9)
H15A	0.6576	0.6032	0.5159	0.074*
C16	0.7554 (5)	0.4773 (2)	0.49781 (12)	0.0580 (8)
H16A	0.7306	0.4831	0.4661	0.070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0803 (8)	0.0852 (7)	0.0905 (8)	0.0111 (5)	-0.0050 (5)	-0.0216 (5)
01	0.093 (2)	0.092 (2)	0.0794 (19)	0.0084 (16)	-0.0267 (15)	-0.0150 (14)
O2	0.0761 (17)	0.0629 (15)	0.0790 (16)	0.0129 (12)	-0.0181 (13)	0.0009 (12)
N1	0.086 (2)	0.0609 (17)	0.0581 (17)	-0.0038 (15)	-0.0151 (16)	0.0005 (13)
C1	0.076 (2)	0.062 (2)	0.0493 (19)	-0.0098 (18)	0.0071 (17)	0.0004 (15)
C2	0.085 (3)	0.071 (2)	0.051 (2)	-0.013 (2)	0.0041 (19)	-0.0045 (17)
C3	0.104 (3)	0.089 (3)	0.067 (3)	-0.026 (3)	0.005 (2)	-0.011 (2)
C4	0.148 (5)	0.080 (3)	0.074 (3)	-0.035 (3)	0.017 (3)	-0.016 (2)
C5	0.148 (5)	0.058 (2)	0.081 (3)	0.001 (3)	0.024 (3)	0.002 (2)
C6	0.100 (3)	0.065 (2)	0.070 (2)	-0.001 (2)	0.008 (2)	0.0031 (19)
C7	0.114 (4)	0.147 (5)	0.109 (4)	0.022 (3)	-0.050 (3)	-0.021 (3)
C8	0.065 (2)	0.066 (2)	0.064 (2)	-0.0021 (17)	-0.0099 (18)	-0.0009 (16)
C9	0.0517 (19)	0.061 (2)	0.059 (2)	-0.0049 (15)	-0.0056 (15)	0.0038 (15)
C10	0.0472 (18)	0.0536 (19)	0.065 (2)	-0.0073 (15)	-0.0069 (15)	0.0057 (15)
C11	0.0432 (17)	0.0570 (19)	0.062 (2)	-0.0058 (14)	-0.0074 (15)	0.0039 (15)
C12	0.073 (2)	0.062 (2)	0.065 (2)	0.0093 (17)	-0.0146 (18)	0.0044 (16)
C13	0.077 (2)	0.078 (2)	0.054 (2)	0.0080 (19)	-0.0122 (18)	-0.0015 (18)
C14	0.0523 (19)	0.061 (2)	0.068 (2)	-0.0029 (16)	-0.0025 (17)	-0.0043 (16)
C15	0.056 (2)	0.0540 (19)	0.076 (2)	-0.0010 (15)	-0.0092 (17)	0.0093 (17)
C16	0.0564 (19)	0.058 (2)	0.060 (2)	-0.0017 (15)	-0.0091 (16)	0.0050 (15)

Geometric parameters (Å, °)

Cl1—C14	1.734 (3)	С7—Н7С	0.9600
O1—C2	1.371 (4)	C8—C9	1.510 (4)

O1—C7	1.428 (5)	C8—H8A	0.9700
O2—C10	1.224 (4)	C8—H8B	0.9700
N1—C1	1.392 (4)	C9—C10	1.491 (4)
N1—C8	1.449 (4)	С9—Н9А	0.9700
N1—H1	0.9952	С9—Н9В	0.9700
C1—C6	1.381 (5)	C10-C11	1.501 (5)
C1—C2	1.410 (5)	C11—C16	1.382 (4)
С2—С3	1.370 (5)	C11—C12	1.389 (5)
C3—C4	1.382 (7)	C12—C13	1.381 (5)
С3—НЗА	0.9300	C12—H12A	0.9300
C4—C5	1.373 (7)	C13—C14	1.377 (5)
C4—H4A	0.9300	C13—H13A	0.9300
С5—С6	1.390 (6)	C14—C15	1.371 (5)
C5—H5A	0.9300	C15—C16	1.379 (5)
С6—Н6А	0.9300	C15—H15A	0.9300
С7—Н7А	0.9600	C16—H16A	0.9300
С7—Н7В	0.9600		
C2—O1—C7	118.2 (3)	N1—C8—H8B	109.9
C1—N1—C8	121.3 (3)	С9—С8—Н8В	109.9
C1—N1—H1	121.8	H8A—C8—H8B	108.3
C8—N1—H1	112.7	C10—C9—C8	113.9 (3)
C6—C1—N1	123.8 (3)	С10—С9—Н9А	108.8
C6—C1—C2	118.8 (3)	С8—С9—Н9А	108.8
N1—C1—C2	117.4 (3)	С10—С9—Н9В	108.8
C3—C2—O1	125.3 (4)	С8—С9—Н9В	108.8
C3—C2—C1	120.8 (4)	Н9А—С9—Н9В	107.7
O1—C2—C1	113.9 (3)	O2—C10—C9	121.3 (3)
C2—C3—C4	119.7 (4)	O2—C10—C11	119.6 (3)
С2—С3—Н3А	120.1	C9—C10—C11	119.1 (3)
С4—С3—Н3А	120.1	C16—C11—C12	118.6 (3)
C5—C4—C3	120.3 (4)	C16—C11—C10	122.5 (3)
С5—С4—Н4А	119.9	C12—C11—C10	118.9 (3)
C3—C4—H4A	119.9	C13—C12—C11	120.5 (3)
C4—C5—C6	120.6 (4)	C13—C12—H12A	119.7
С4—С5—Н5А	119.7	C11—C12—H12A	119.7
С6—С5—Н5А	119.7	C14—C13—C12	119.6 (3)
C1—C6—C5	119.9 (4)	С14—С13—Н13А	120.2
С1—С6—Н6А	120.0	C12—C13—H13A	120.2
С5—С6—Н6А	120.0	C15—C14—C13	120.8 (3)
O1—C7—H7A	109.5	C15—C14—Cl1	120.1 (3)
O1—C7—H7B	109.5	C13—C14—Cl1	119.1 (3)
H7A—C7—H7B	109.5	C14—C15—C16	119.4 (3)
O1—C7—H7C	109.5	C14—C15—H15A	120.3
Н7А—С7—Н7С	109.5	C16—C15—H15A	120.3
H7B—C7—H7C	109.5	C15—C16—C11	121.1 (3)
N1—C8—C9	108.9 (3)	C15—C16—H16A	119.4
N1—C8—H8A	109.9	C11—C16—H16A	119.4
С9—С8—Н8А	109.9		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!$
C15—H15A···O2 ⁱ	0.93	2.49	3.414 (4)	171
Symmetry codes: (i) $-x+3/2$, $y+1/2$, z.				

Fig. 1

Fig. 2

